28
  Ni  
58.693400
Nickel

Name: Nickel
Symbol: Ni
Atomic Number: 28
AtomicWeight: 58.693400
Family: Transition Metals
CAS RN: 7440-02-0
Description: A silvery-white transition metal that is malleable and ductile.
State (25C): Solid
Oxidation states: +2, +3

Molar Volume: 6.59 cm3/mole
Valence Electrons: 3d84s2

Boiling Point:  3005K, 2732C, 4950F
Melting Point:
1726K, 1453C, 2647F
Electrons Energy Level: 2, 8, 16, 2
Isotopes: 26 + 5 Stable
Heat of Vaporization: 370.4 kJ/mol
Heat of Fusion: 17.47 kJ/mol
Density: 8.9 g/cm3 @ 300K
Specific Heat: 0.44 J/gK
Atomic Radius: 1.62
Ionic Radius: 0.69
Electronegativity: 1.91 (Pauling); 1.75 (Allrod Rochow)
Vapor Pressure: 237 Pa @ 1453C

1s2 2s2p6 3s2p6d8 4s2

History

The use of Nickel is ancient, and can be traced back as far as 3500 BC.  Bronzes from what is now Syria had a nickel content of up to two percent.  Further, there are Chinese manuscripts suggesting that "white copper" (e.g. baitung) was used in the Orient between 1700 and 1400 BC.  However, because the ores of nickel were easily mistaken for ores of silver, any understanding of this metal and its use dates to more contemporary times.

nickel.jpg (1051 bytes)

Alchemical Symbol, Nickel

Minerals containing nickel (e.g. kupfernickel, meaning copper of the devil ("Nick"), or false copper) were of value for coloring glass green.  In 1751, Baron Axel Fredrik Cronstedt was attempting to extract copper from kupfernickel (now called niccolite, NiAs), and obtained instead a white metal that he called nickel.

Coins of pure nickel were first used in 1881 in Switzerland.

Characteristics

Nickel is a silvery white metal that takes on a high polish.  It belongs to the transition metals, and is hard and ductile.  It occurs combined with sulfur in millerite, with arsenic in the mineral niccolite, and with arsenic and sulfur in nickel glance.

1s2
2s2 2p6
3s2 3p6 3d8
4s2

Because of its permanence in air and its inertness to oxidation, it is used in coins, for plating iron, brass, etc., for chemical apparatus, and in certain alloys, such as German silver.  It is magnetic, and is very frequently accompanied by cobalt, both being found in meteoric iron.  It is chiefly valuable for the alloys it forms, especially many superalloys, and particularly stainless steel.

Nickel is one of the five ferromagnetic elements.  However, the U.S. "nickel" coin is not magnetic, because it actually is mostly (75%) copper.   The Canadian nickel minted at various periods between 1922-81 was 99.9% nickel, and these were magnetic.

The most common oxidation state of nickel is +2, though 0, +1, +3 and +4 Ni complexes are observed.  It is also thought that a +6 oxidation state may exist, however, results are inconclusive.

The unit cell of nickel is an FCC with a lattice parameter of 0.356 nm giving a radius of the atom of 0.126 nm.

Nickel-62 is the most stable nuclide of all the existing elements; it is more stable even than Iron-56.

Occurrence

The bulk of the nickel mined comes from two types of ore deposits.  The first are laterites where the principal ore minerals are nickeliferous limonite: (Fe, Ni)O(OH) and garnierite (a hydrous nickel silicate): (Ni, Mg)3Si2O5(OH).   The second are magmatic sulfide deposits where the principal ore mineral is pentlandite: (Ni, Fe)9S8.

In terms of supply, the Sudbury region of Ontario, Canada, produces about 30 percent of the world's supply of nickel.  The Sudbury Basin deposit is theorized to have been created by a massive meteorite impact event early in the eologic history of Earth.   Russia contains about 40% of the world's known resources at the massive Norilsk deposit in Siberia.  The Russian mining company MMC Norilsk Nickel mines this for the world market, as well as the associated palladium.  Other major deposits of nickel are found in New Caledonia, Australia, Cuba, and Indonesia.  The deposits in tropical areas are typically laterites which are produced by the intense weathering of ultramafic igneous rocks and the resulting secondary concentration of nickel bearing oxide and silicate minerals.  A recent development has been the exploitation of a deposit in western Turkey, especially convenient for European smelters, steelmakers and factories.   The one locality in the United States where nickel is commercially mined is Riddle, Oregon, where several square miles of nickel-bearing garnierite surface deposits are located.

Based on geophysical evidence, most of the nickel on Earth is postulated to be concentrated in the Earth's core.

Applications

Nickel is used in many industrial and consumer products, including stainless steel, magnets, coinage, and special alloys.  It is also used for plating and as a green tint in glass.  Nickel is pre-eminently an alloy metal, and its chief use is in the nickel steels and nickel cast irons, of which there are innumberable varieties.  It is also widely used for many other alloys, such as nickel brasses and bronzes, and alloys with copper, chromium, aluminum, lead, cobalt, silver, and gold.

Nickel consumption can be summarized as: nickel steels (60%), nickel-copper alloys and nickel silver (14%), malleable nickel, nickel clad and Inconel (9%), plating (6%), nickel cast irons (3%), heat and electric resistance alloys (3%), nickel brasses and bronzes (2%), others (3%).

In the laboratory, nickel is frequently used as a catalyst for hydrogenation, most often using Raney nickel, a finely divided form of the metal.

Biological Role

Although not recognized until the 1970s, nickel plays numerous roles in biology.   In fact urease contains nickel, an enzyme which assists in the hydrolysis of urea.   The NiFe-hydrogenases contain nickel in addition to iron-sulfur clusters.   Such [NiFe]-hydrogenases characteristically oxidise H2.  A nickel-tetrapyrrole coenzyme, F430, is present in the methyl Coenzyme M reductase which powers methanogenic archaea.

One of the carbon monoxide dehydrogenase enzymes consists of an Fe-Ni-S cluster.

Other nickel-containing enzymes include a class of superoxide dismutase and a glyoxalase.

Extraction/Purification

Nickel can be recovered using extractive metallurgy.  Most sulfide ores have traditionally been processed using pyrometallurgical techniques to produce a matte for further refining.  Recent advances in hydrometallurgy have resulted in recent nickel processing operations being developed using these processes.  Most sulphide deposits have traditionally been processed by concentration through a froth flotation process followed by pyrometallurgical extraction.  Recent advances in hydrometallurgical processing of sulphides has led to some recent projects being built around this technology.

Nickel is extracted from its ores by conventional roasting and reduction processes which yield a metal of >75% purity.  Final purification in the Mond process to >99.99% purity is performed by reacting nickel and carbon monooxide to form nickel carbonyl.  This gas is passed into a large chamber at a higher temperature in which tens of thousands of nickel spheres are maintained in constant motion.  The nickel carbonyl decomposes depositing pure nickel onto the nickel spheres (known as pellets).   Alternatively, the nickel carbonyl may be decomposed in a smaller chamber without pellets present to create fine powders.  The resultant carbon monoxide is re-circulated through the process.  The highly pure nickel produced by this process is known as carbonyl nickel.  A second common form of refining involves the leaching of the metal matte followed by the electro-winning of the nickel from solution by plating it onto a cathode.  In many stainless steel applications, the nickel can be taken directly in the 75% purity form, depending on the presence of any impurities.

The largest producer of nickel is Russia which extracts 267,000 tons of nickel per year.  Austrailia and Canada (particularly the Sudbury Basin) are the second and third largest producers, making 207 and 189.3 thousand tons per year.

Metal Value

As of February 2, 2007, nickel was trading at $18.20/lb.(equal to $1.14/oz), making the US nickel coin an attractive target for melting by people wanting to sell the metal at a profit.  However, the United States Mint, in anticipation of this practice, implemented new interim rules on December 14, 2006, subject to public comment for 30 days, which criminalize the melting and export of pennies and nickels.   Violators can be punished with a fine of up to $10,000 and/or imprisoned for a maximum of five years.

Compounds

Isotopes

Naturally occurring nickel is composed of 5 stable isotopes, 58Ni, 60Ni, 61Ni, 62Ni and 64Ni with 58Ni being the most abundant (68.077% natural abundance).  26 radioisotopes have been characterised with the most stable being 59Ni with a half-life of 76,000 years, 63Ni with a half-life of 100.1 years, and 56Ni with a half-life of 6.077 days.   All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds.  This element also has 1 meta state.

Nickel-56 is produced in large quantities in type Ia supernovae and the shape of the light curve of these supernovae corresponds to the decay of nickel-56 to cobalt-56 and then to iron-56.

Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years.   59Ni has found many applications in isotope geology.  59Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.  Nickel-60 is the daughter product of the extinct radionuclide 60Fe (half-life = 1.5 Myr).  Because the extinct radionuclide 60Fe had such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60Ni.  Therefore, the abundance of 60Ni present in extraterrestrial material may provide insight into the origin of the solar system and its early history.

Nickel-62 has the highest binding energy per nucleon of any isotope for any element.   Isotopes heavier than 62Ni cannot be formed by nuclear fusion without losing energy.

Nickel-48, discovered in 1999, is the most proton-rich nickel isotope known .   With 28 protons and 20 neutrons 48Ni is "doubly magic" (like 208Pb) and therefore unusually stable.

The isotopes of nickel range in atomic weight from 48 amu (48-Ni) to 78 amu (78-Ni).   Nickel-78's half-life was recently measured to be 110 milliseconds and is believed to be an important isotope involved in supernova nucleosynthesis of elements heavier than iron.

atom.gif (700 bytes)

Isotope  
Atomic Mass
 
Half-Life
48Ni 48.01975 ~10 ms
49Ni 49.00966 13 ms
50Ni 49.99593 9.1 ms
51Ni 50.98772 ~30 ms
52Ni 51.97568 38 ms
53Ni 52.96847 45 ms
54Ni 53.95791(5) 104 ms
55Ni 54.951330(12) 204.7 ms
56Ni 55.942132 6.075 days
57Ni 56.9397935 35.60 hours
58Ni 57.9353429 Stable
59Ni 58.9343467 7.6 years
60Ni 59.9307864 Stable
61Ni 60.9310560 Stable
62Ni 61.9283451 Stable
63Ni 62.9296694 100.1 years
64Ni 63.9279660 Stable
65Ni 64.9300843 2.5172 hours
66Ni 65.9291393 54.6 hours
67Ni 66.931569 21 seconds
68Ni 67.931869 29 seconds
69Ni 68.935610 11.5 seconds
70Ni 69.93650 6.0 seconds
71Ni 70.94074 2.56 seconds
72Ni 71.94209 1.57 seconds
73Ni 72.94647 0.84 seconds
74Ni 73.94807 0.68 seconds
75Ni 74.95287 0.6 seconds
76Ni 75.95533 470 ms
77Ni 76.96055 ~300 ms
78Ni 77.96318 ~200 ms

Precautions

Exposure to nickel metal and soluble compounds should not exceed 0.05 mg/cm in nickel equivalents per 40-hour work week.  Nickel sulfide fume and dust is believed to be carcinogenic, and various other nickel compounds may be as well.

40px-Skull_and_crossbones.svg.jpg (1420 bytes) Nickel carbonyl, Ni(CO)4, is an extremely toxic gas.  The toxicity of metal carbonyls is a function of both the toxicity of a metal as well as the carbonyl's ability to give off highly toxic carbon monoxide gas, and this one is no exception. It is explosive in air.

Sensitized individuals may show an allergy to nickel affecting their skin.  The amount of nickel which is allowed in products which come into contact with human skin is regulated by the European Union.  In 2002 a report in the journal Nature researchers found amounts of nickel being emitted by 1 and 2 Euro coins far in excess of those standards.  This is believed to be due to a galvanic reaction.

atom.gif (700 bytes)

Nickel Data
 

Atomic Structure

  • Atomic Radius: 1.62
  • Atomic Volume: 6.59cm3/mol
  • Covalent Radius: 1.15
  • Cross Section (Thermal Neutron Capture) Barns: 4.49
  • Crystal Structure: Cubic face centered
  • Electron Configuration:
    1s2 2s2p6 3s2p6d8 4s2
  • Electrons per Energy Level: 2, 8, 16, 2
  • Ionic Radius: 0.69
  • Filling Orbital: 3d8
  • Number of Electrons (with no charge): 28
  • Number of Neutrons (most common/stable nuclide): 31
  • Number of Protons: 28
  • Oxidation States: 2, 3
  • Valence Electrons: 3d8 4s2

Chemical Properties

  • Electrochemical Equivalent: 1.095 g/amp-hr
  • Electron Work Function: 5.15eV
  • Electronegativity: 1.91 (Pauling); 1.75 (Allrod Rochow)
  • Heat of Fusion: 17.47 kJ/mol
  • Incompatibilities:
    Strong acids, sulfur, selenium, wood & other combustibles, nickel nitrate
  • Ionization Potential
    • First: 7.635
    • Second: 18.168
    • Third: 35.17
  • Valence Electron Potential (-eV): 42

Physical Properties

  • Atomic Mass Average: 58.6934
  • Boiling Point: 3005K, 2732C, 4950F
  • Coefficient of Lineal Thermal Expansion/K-1: 13.3E-6
  • Conductivity
    Electrical: 0.143 106/cm
    Thermal: 0.907 W/cmK
  • Density: 8.9 g/cm3 @ 300K
  • Description:
    A silvery-white transition metal that is malleable and ductile. Nickel resists corrosion but is soluble in acids. It is, however, unaffected by alkalis.
  • Elastic Modulus:
    • Bulk: 180/GPa
    • Rigidity: 76/GPa
    • Youngs: 200/GPa
  • Enthalpy of Atomization: 422.6 kJ/mole @ 25C
  • Enthalpy of Fusion: 17.57 kJ/mole
  • Enthalpy of Vaporization: 371.8 kJ/mole
  • Flammablity Class: Combustible Solid
  • Freezing Point: see melting point
  • Hardness Scale
    • Brinell: 700 MN m-2
    • Mohs: 4
    • Vickers: 638 MN m-2
  • Heat of Vaporization: 370.4 kJ/mol
  • Melting Point: 1726K, 1453C, 2647F
  • Molar Volume: 6.59 cm3/mole
  • Optical Reflectivity: 72%
  • Physical State (at 20C & 1atm): Solid
  • Specific Heat: 0.44 J/gK
  • Vapor Pressure: 237 Pa @ 1453C

Regulatory / Health

  • CAS Number
    • 7440-02-0
  • RTECS: QR5950000 (metal)
  • OSHA Permissible Exposure Limit (PEL)
    • TWA: 1 mg/m3
  • OSHA PEL Vacated 1989
    • TWA: 1 mg/m3
  • NIOSH Recommended Exposure Limit (REL)
    • TWA: 0.015 mg/m3
    • IDLH: 10 mg/m3 (Potential NIOSH carcinogen)
  • Routes of Exposure: Inhalation; Ingestion; Skin and/or eye contact
  • Target Organs: Nasal cavities, lungs, skin
  • Levels In Humans:
    Note: this data represents naturally occuring levels of elements in the typical human, it DOES NOT represent recommended daily allowances.
    • Blood/mg dm-3: 0.01-0.05
    • Bone/p.p.m: <0.7
    • Liver/p.p.m: 0.02-1.8
    • Muscle/p.p.m: 1-2
    • Daily Dietary Intake: 0.3-0.5 mg
    • Total Mass In Avg. 70kg human: 15 mg

Who / Where / When / How

  • Discoverer: Axel F Cronstedt
  • Discovery Location: Stockholm Sweden
  • Discovery Year: 1751
  • Name Origin:
    German: kupfernickel (Devil's copper).
  • Abundance:
    • Earth's Crust/p.p.m.: 80
    • Seawater/p.p.m.:
      • Atlantic Suface: 0.0001
      • Atlantic Deep: 0.0004
      • Pacific Surface: 0.0001
      • Pacific Deep: 0.00057
    • Atmosphere/p.p.m.: N/A
    • Sun (Relative to H=1E12): 1910000
  • Sources:
    Chiefly found in pentlandite [(Ni,Fe)9S8] and garnierite ores. Annual world production is over 1,300,000 tons. The primary mining areas are Russia, South Africa, Australia, New Caledonia, Cuba, Indonesia, USA and Canada.
  • Uses:
    Used in electroplating and metal alloys because of its resistance to corrosion. Also in nickel-cadmium batteries; as a catalyst and for coins.

Ionization Energy (eV): 7.640 eV
Estimated Crustal Abundance: 8.4101 milligrams per kilogram
Estimated Oceanic Abundance:
5.610-4 milligrams per liter

Transition Metals
Group 3
(IIIB)
4
(IVB)
5
(VB)
6
(VIB)
7
(VIIB)
8
(VIIIB)
9
(VIIIB)
10 (VIIIB) 11
(IB)
12
(IIB)
Period 4 21
Sc
44.95
22
Ti
47.86
23
V
50.94
24
Cr
51.99
25
Mn
54.93
26
Fe
55.84
27
Co
58.93
28
Ni
58.69
29
Cu
63.54
30
Zn
65.39
Period 5 39
Y
88.90
40
Zr
91.22
41
Nb
92.90
42
Mo
95.94
43
Tc
98.00
44
Ru
101.0
45
Rh
102.9
46
Pd
106.4
47
Ag
107.8
48
Cd
112.4
Period 6 57
La
138.9
72
Hf
178.4
73
Ta
180.9
74
W
183.8
75
Re
186.2
76
Os
190.2
77
Ir
192.2
78
Pt
195.0
79
Au
196.9
80
Hg
200.5
Period 7 89
Ac
227.0
104
Rf
261.0
105
Db
262.0
106
Sg
266.0
107
Bh
264.0
108
Hs
269.0
109
Mt
268.0
110
Ds
269.0
111
Rg
272.0
112
Uub
277.0